Threshold Auto-Tuning Metric Learning

نویسندگان

  • Yuya Onuma
  • Rachelle Rivero
  • Tsuyoshi Kato
چکیده

It has been reported repeatedly that discriminative learning of distance metric boosts the pattern recognition performance. A weak point of ITML-based methods is that the distance threshold for similarity/dissimilarity constraints must be determined manually and it is sensitive to generalization performance, although the ITML-based methods enjoy an advantage that the Bregman projection framework can be applied for optimization of distance metric. In this paper, we present a new formulation of metric learning algorithm in which the distance threshold is optimized together. Since the optimization is still in the Bregman projection framework, the Dykstra algorithm can be applied for optimization. A non-linear equation has to be solved to project the solution onto a half-space in each iteration. Näıve method takes O(LMn) computational time to solve the nonlinear equation. In this study, an efficient technique that can solve the nonlinear equation in O(Mn) has been discovered. We have proved that the root exists and is unique. We empirically show that the accuracy of pattern recognition for the proposed metric learning algorithm is comparable to the existing metric learning methods, yet the distance threshold is automatically tuned for the proposed metric learning algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective mind: Towards practical and collaborative auto-tuning

Empirical auto-tuning and machine learning techniques have been showing high potential to improve execution time, power consumption, code size, reliability and other important metrics of various applications for more than two decades. However, they are still far from widespread production use due to lack of native support for auto-tuning in an ever changing and complex software and hardware sta...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Historic Learning Approach for Auto-tuning OpenACC Accelerated Scientific Applications

The performance optimization of scientific applications usually requires an in-depth knowledge of the hardware and software. A performance tuning mechanism is suggested to automatically tune OpenACC parameters to adapt to the execution environment on a given system. A historic learning based methodology is suggested to prune the parameter search space for a more efficient auto-tuning process. T...

متن کامل

YellowFin and the Art of Momentum Tuning

Adaptive Optimization Hyperparameter tuning is a big cost of deep learning. Momentum: a key hyperparameter to SGD and variants. Adaptive methods, e.g. Adam1, don’t tune momentum. YellowFin optimizer • Based on the robustness properties of momentum. • Auto-tuning of momentum and learning rate in SGD. • Closed-loop momentum control for async. training. Experiments ResNet and LSTM YellowFin runs w...

متن کامل

Parameter Auto-tuning Method Based on Self-learning Algorithm

The central air condition system is a complex system. Aimed at the puzzle of optimal status adjusting by once setting parameter of fuzzy PID, the paper proposed a sort of parameter auto-tuning method of fuzzy-PID based on self-learning algorithm. It adopted parameter autotuning technique to adjust the PID parameters in real time so as to ensure good quality of control system. It combined fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.02125  شماره 

صفحات  -

تاریخ انتشار 2018