Threshold Auto-Tuning Metric Learning
نویسندگان
چکیده
It has been reported repeatedly that discriminative learning of distance metric boosts the pattern recognition performance. A weak point of ITML-based methods is that the distance threshold for similarity/dissimilarity constraints must be determined manually and it is sensitive to generalization performance, although the ITML-based methods enjoy an advantage that the Bregman projection framework can be applied for optimization of distance metric. In this paper, we present a new formulation of metric learning algorithm in which the distance threshold is optimized together. Since the optimization is still in the Bregman projection framework, the Dykstra algorithm can be applied for optimization. A non-linear equation has to be solved to project the solution onto a half-space in each iteration. Näıve method takes O(LMn) computational time to solve the nonlinear equation. In this study, an efficient technique that can solve the nonlinear equation in O(Mn) has been discovered. We have proved that the root exists and is unique. We empirically show that the accuracy of pattern recognition for the proposed metric learning algorithm is comparable to the existing metric learning methods, yet the distance threshold is automatically tuned for the proposed metric learning algorithm.
منابع مشابه
Collective mind: Towards practical and collaborative auto-tuning
Empirical auto-tuning and machine learning techniques have been showing high potential to improve execution time, power consumption, code size, reliability and other important metrics of various applications for more than two decades. However, they are still far from widespread production use due to lack of native support for auto-tuning in an ever changing and complex software and hardware sta...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملHistoric Learning Approach for Auto-tuning OpenACC Accelerated Scientific Applications
The performance optimization of scientific applications usually requires an in-depth knowledge of the hardware and software. A performance tuning mechanism is suggested to automatically tune OpenACC parameters to adapt to the execution environment on a given system. A historic learning based methodology is suggested to prune the parameter search space for a more efficient auto-tuning process. T...
متن کاملYellowFin and the Art of Momentum Tuning
Adaptive Optimization Hyperparameter tuning is a big cost of deep learning. Momentum: a key hyperparameter to SGD and variants. Adaptive methods, e.g. Adam1, don’t tune momentum. YellowFin optimizer • Based on the robustness properties of momentum. • Auto-tuning of momentum and learning rate in SGD. • Closed-loop momentum control for async. training. Experiments ResNet and LSTM YellowFin runs w...
متن کاملParameter Auto-tuning Method Based on Self-learning Algorithm
The central air condition system is a complex system. Aimed at the puzzle of optimal status adjusting by once setting parameter of fuzzy PID, the paper proposed a sort of parameter auto-tuning method of fuzzy-PID based on self-learning algorithm. It adopted parameter autotuning technique to adjust the PID parameters in real time so as to ensure good quality of control system. It combined fuzzy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.02125 شماره
صفحات -
تاریخ انتشار 2018